摘要
In this paper, we consider the positive singular solutions for the following Hardy-Sobolev equation Δu+up+u 2*(s)-1/|x|s=0 in B1\{0}, where p > 1, 0 < s < 2, 2*(s) = 2(n-s)/n-2, n ≥ 3 and B1 is the unit ball in Rn centered at the origin. We prove that if p > ""+1 then such solution is unique.
原文 | 英語 |
---|---|
頁(從 - 到) | 123-128 |
頁數 | 6 |
期刊 | Discrete and Continuous Dynamical Systems - Series S |
發行號 | SUPPL. |
出版狀態 | 已發佈 - 2013 11月 |
對外發佈 | 是 |
ASJC Scopus subject areas
- 分析
- 離散數學和組合
- 應用數學