On the Lorentz cone complementarity problems in infinite-dimensional real Hilbert space

Xin He Miao, Jein Shan Chen

研究成果: 雜誌貢獻期刊論文同行評審

2 引文 斯高帕斯(Scopus)

摘要

In this article, we consider the Lorentz cone complementarity problems in infinite-dimensional real Hilbert space. We establish several results that are standard and important when dealing with complementarity problems. These include proving the same growth of the Fishcher-Burmeister merit function and the natural residual merit function, investigating property of bounded level sets under mild conditions via different merit functions, and providing global error bounds through the proposed merit functions. Such results are helpful for further designing solution methods for the Lorentz cone complementarity problems in Hilbert space.

原文英語
頁(從 - 到)507-523
頁數17
期刊Numerical Functional Analysis and Optimization
32
發行號5
DOIs
出版狀態已發佈 - 2011 五月

ASJC Scopus subject areas

  • 分析
  • 訊號處理
  • 電腦科學應用
  • 控制和優化

指紋

深入研究「On the Lorentz cone complementarity problems in infinite-dimensional real Hilbert space」主題。共同形成了獨特的指紋。

引用此