On Hankel determinants for Dyck paths with peaks avoiding multiple classes of heights

Hsu Lin Chien, Sen Peng Eu, Tung Shan Fu

研究成果: 雜誌貢獻期刊論文同行評審

摘要

For any integer m≥2 and a set V⊂{1,…,m}, let (m,V) denote the union of congruence classes of the elements in V modulo m. We study the Hankel determinants for the number of Dyck paths with peaks avoiding the heights in the set (m,V). For any set V of even elements of an even modulo m, we give an explicit description of the sequence of Hankel determinants in terms of subsequences of arithmetic progression of integers. There are numerous instances for varied (m,V) with periodic sequences of Hankel determinants. We present a sufficient condition for the set (m,V) such that the sequence of Hankel determinants is periodic, including even and odd modulus m.

原文英語
文章編號103478
期刊European Journal of Combinatorics
101
DOIs
出版狀態已發佈 - 2022 三月

ASJC Scopus subject areas

  • 離散數學和組合

指紋

深入研究「On Hankel determinants for Dyck paths with peaks avoiding multiple classes of heights」主題。共同形成了獨特的指紋。

引用此