Non-liner learning for mixture of Gaussians

Chih Yang Lin, Pin Hsian Liu, Tatenda Muindisi, Chia Hung Yeh, Po Chyi Su

研究成果: 書貢獻/報告類型會議論文篇章

摘要

Background modeling plays a key role of event detection in intelligent surveillance systems. Gaussian Mixture Model (GMM) is the wide-used background modeling method in latest surveillance systems. However, the model has some disadvantageous when the object moves slowly. In this paper, we propose a mechanism which takes the advantage of Gaussian error function (ERF) to adjust the growths of each Gaussian's weights and variances, to solve the problem that traditional GMM misjudged the slow moving object as background. The mechanism improves the GMM model to detect the slow moving object accurately and enhance the robustness of surveillance systems.

原文英語
主出版物標題2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2013
DOIs
出版狀態已發佈 - 2013
對外發佈
事件2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2013 - Kaohsiung, 臺灣
持續時間: 2013 10月 292013 11月 1

出版系列

名字2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2013

會議

會議2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2013
國家/地區臺灣
城市Kaohsiung
期間2013/10/292013/11/01

ASJC Scopus subject areas

  • 資訊系統
  • 訊號處理

引用此