摘要
A comparative study of indium-tin-oxide (ITO) nanowhiskers (NWhs) and thin films as transparent conductors in the terahertz frequency range are conducted. We employ both transmission-type and reflection-type terahertz time-domain spectroscopies (THz-TDTS and THz-TDRS) to explore the far-infrared optical properties of these samples. Their electrical properties, such as plasma frequencies and carrier scattering times, are analyzed and found to be fitted well by the Drude-Smith model over 0.1-1.4 THz. Further, structural and crystalline properties of samples are examined by scanning electron microscopy and X-ray diffraction, respectively. Non-Drude behavior of complex conductivities in ITO NWhs is attributed to carrier scattering from grain boundaries and impurity ions. In ITO thin films, however, the observed non-Drude behavior is ascribed to scattering by impurity ions only. Considering NWhs and thin films with the same height, mobility of the former is ∼125 cm 2 V-1 s-1, much larger than those of the ITO thin films, ∼ 27 cm2 V-1 s-1. This is attributed to the longer carrier scattering time of the NWhs. The dc conductivities ∼ 250Ω -1 cm-1 or real conductivities in the THz frequency region of ITO NWhs is, however, lower than those of the ITO thin films ∼ 800Ω -1 cm-1 but adequate for use as electrodes. Partly, this is a reflection of the much higher plasma frequencies of thin films. Significantly, the transmittance of ITO NWhs (≅ 60%-70%) is much higher (≅ 13 times) than those of ITO thin films in the THz frequency range. The underneath basic physics is that the THz radiation can easily propagate through the air-space among NWhs. The superb transmittance and adequate electrical properties of ITO NWhs suggest their potential applications as transparent conducting electrodes in THz devices.
原文 | 英語 |
---|---|
文章編號 | 6547195 |
頁(從 - 到) | 677-690 |
頁數 | 14 |
期刊 | IEEE Journal of Quantum Electronics |
卷 | 49 |
發行號 | 8 |
DOIs | |
出版狀態 | 已發佈 - 2013 |
對外發佈 | 是 |
ASJC Scopus subject areas
- 原子與分子物理與光學
- 凝聚態物理學
- 電氣與電子工程