Non-drude behavior in indium-tin-oxide nanowhiskers and thin films investigated by transmission and reflection thz time-domain spectroscopy

Chan Shan Yang, Mao Hsiang Lin, Chia Hua Chang, Peichen Yu, Jia Min Shieh, Chang Hong Shen, Osamu Wada, Ci Ling Pan

研究成果: 雜誌貢獻期刊論文同行評審

41 引文 斯高帕斯(Scopus)

摘要

A comparative study of indium-tin-oxide (ITO) nanowhiskers (NWhs) and thin films as transparent conductors in the terahertz frequency range are conducted. We employ both transmission-type and reflection-type terahertz time-domain spectroscopies (THz-TDTS and THz-TDRS) to explore the far-infrared optical properties of these samples. Their electrical properties, such as plasma frequencies and carrier scattering times, are analyzed and found to be fitted well by the Drude-Smith model over 0.1-1.4 THz. Further, structural and crystalline properties of samples are examined by scanning electron microscopy and X-ray diffraction, respectively. Non-Drude behavior of complex conductivities in ITO NWhs is attributed to carrier scattering from grain boundaries and impurity ions. In ITO thin films, however, the observed non-Drude behavior is ascribed to scattering by impurity ions only. Considering NWhs and thin films with the same height, mobility of the former is ∼125 cm 2 V-1 s-1, much larger than those of the ITO thin films, ∼ 27 cm2 V-1 s-1. This is attributed to the longer carrier scattering time of the NWhs. The dc conductivities ∼ 250Ω -1 cm-1 or real conductivities in the THz frequency region of ITO NWhs is, however, lower than those of the ITO thin films ∼ 800Ω -1 cm-1 but adequate for use as electrodes. Partly, this is a reflection of the much higher plasma frequencies of thin films. Significantly, the transmittance of ITO NWhs (≅ 60%-70%) is much higher (≅ 13 times) than those of ITO thin films in the THz frequency range. The underneath basic physics is that the THz radiation can easily propagate through the air-space among NWhs. The superb transmittance and adequate electrical properties of ITO NWhs suggest their potential applications as transparent conducting electrodes in THz devices.

原文英語
文章編號6547195
頁(從 - 到)677-690
頁數14
期刊IEEE Journal of Quantum Electronics
49
發行號8
DOIs
出版狀態已發佈 - 2013
對外發佈

ASJC Scopus subject areas

  • 原子與分子物理與光學
  • 凝聚態物理學
  • 電氣與電子工程

指紋

深入研究「Non-drude behavior in indium-tin-oxide nanowhiskers and thin films investigated by transmission and reflection thz time-domain spectroscopy」主題。共同形成了獨特的指紋。

引用此