Neural networks output feedback controllers using nonlinear parametric wavelet functions

研究成果: 雜誌貢獻文章

1 引文 斯高帕斯(Scopus)

摘要

Purpose: The purpose of this paper is to propose an adaptive output feedback controller using wavelet neural networks with nonlinear parameterization for unknown nonlinear systems with only system output measurement. Design/methodology/approach: An error observer is used to estimate the tracking errors through output measurement information, and the wavelet neural networks are utilized to online approximate an unknown control input by adjusting their internal parameters. Findings: The controller integrates an error observer and wavelet neural networks with nonlinear parameterization into adaptive control design and is derived in accordance with implicit function and mean value theorem. The adjustment mechanism for the parameters of the wavelet neural networks can be derived by means of mean value theorem and Lyapunov theorem, and the stability of the closed-loop system can be guaranteed. Originality/value: This paper utilizes the nonlinear parametric wavelet neural networks with estimate state inputs to obtain the adaptive control input for nonaffine systems with only system output measurement, and the nonlinear wavelet parameters can be adjusted efficiently.

原文英語
頁(從 - 到)672-685
頁數14
期刊International Journal of Intelligent Computing and Cybernetics
3
發行號4
DOIs
出版狀態已發佈 - 2010 十一月 1

ASJC Scopus subject areas

  • Computer Science(all)

指紋 深入研究「Neural networks output feedback controllers using nonlinear parametric wavelet functions」主題。共同形成了獨特的指紋。

  • 引用此