Negatively curved sets on surfaces of Constant Mean Curvature in ℝ3 are Large

Wu Hsiung Huang, Chun Chi Lin

研究成果: 雜誌貢獻期刊論文同行評審

10 引文 斯高帕斯(Scopus)

摘要

It is proved that the negatively curved set M_ on a nonparametric surface M of constant mean curvature in ℝ3 must extend to the boundary ∂M, if M_ is nonempty. For M parametric, if M_ is compactly included in the interior of M , then M_ is at least as large as an extremal domain. The results imply certain convexity results on elliptic partial differential equations. Second-order calculus of variation is employed.

原文英語
頁(從 - 到)105-116
頁數12
期刊Archive for Rational Mechanics and Analysis
141
發行號2
DOIs
出版狀態已發佈 - 1998 3月 26
對外發佈

ASJC Scopus subject areas

  • 分析
  • 數學(雜項)
  • 機械工業

指紋

深入研究「Negatively curved sets on surfaces of Constant Mean Curvature in ℝ3 are Large」主題。共同形成了獨特的指紋。

引用此