摘要
Let p be a prime and let G be a finite p-group. We show that if the integral group ring Z[G] satisfies the multiplicative Jordan decomposition property, then every noncyclic subgroup of G is normal. This is used to simplify the work of Hales, Passi and Wilson on the classification of integral group rings of finite 2-groups with the multiplicative Jordan decomposition property.
原文 | 英語 |
---|---|
頁(從 - 到) | 300-313 |
頁數 | 14 |
期刊 | Journal of Algebra |
卷 | 371 |
DOIs | |
出版狀態 | 已發佈 - 2012 |
ASJC Scopus subject areas
- 代數與數理論