摘要
Due to the growth of thin-film solar photovoltaic (PV) market for renewable energy sources, the development of versatile technique for scribing surface patterns with new record efficiency is crucial. This study presents an ultrafast-laser process for noncontact and chemical-free scribing of thin-film layers in CuInxGa(1-x)Se2 (CIGS)-based PV modules. The proposed ultrafast laser scribing process for single- and multiple-pass patterning was performed using an infrared laser system comprising a femtosecond laser source, galvano-mirror scanner, and high-precision motor driven stage. The interaction between laser beam and three thin films in CIGS-based PV modules was determined by investigating potential film-removal mechanisms, such as geometrical, thermal, mechanical, and optical properties. Well-defined grooves were successfully obtained on thin-film layers by applying pulse energies near the ablation threshold. The experimental results and numerical calculations show that the laser-material interactions indicate that the proposed surface-pattern technique is precise. The energy transfer between the laser beam and thin-film device was affected by introducing an electron-photon coupling variable. The study results show the surface-pattern characteristics of applying an ultrafast laser to thin-film PV modules under controlled process conditions.
原文 | 英語 |
---|---|
頁(從 - 到) | 41-47 |
頁數 | 7 |
期刊 | Microelectronic Engineering |
卷 | 143 |
DOIs | |
出版狀態 | 已發佈 - 2015 8月 1 |
ASJC Scopus subject areas
- 電子、光磁材料
- 原子與分子物理與光學
- 凝聚態物理學
- 表面、塗料和薄膜
- 電氣與電子工程