Multilabel Deep Visual-Semantic Embedding

Mei Chen Yeh*, Yi Nan Li

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

16 引文 斯高帕斯(Scopus)

摘要

Inspired by the great success from deep convolutional neural networks (CNNs) for single-label visual-semantic embedding, we exploit extending these models for multilabel images. We propose a new learning paradigm for multilabel image classification, in which labels are ranked according to its relevance to the input image. In contrast to conventional CNN models that learn a latent vector representation (i.e., the image embedding vector), the developed visual model learns a mapping (i.e., a transformation matrix) from an image in an attempt to differentiate between its relevant and irrelevant labels. Despite the conceptual simplicity of our approach, the proposed model achieves state-of-the-art results on three public benchmark datasets.

原文英語
文章編號8691414
頁(從 - 到)1530-1536
頁數7
期刊IEEE Transactions on Pattern Analysis and Machine Intelligence
42
發行號6
DOIs
出版狀態已發佈 - 2020 6月 1

ASJC Scopus subject areas

  • 軟體
  • 電腦視覺和模式識別
  • 計算機理論與數學
  • 人工智慧
  • 應用數學

指紋

深入研究「Multilabel Deep Visual-Semantic Embedding」主題。共同形成了獨特的指紋。

引用此