Multidimensional item response theory models for testlet-based doubly bounded data

Chen Wei Liu*

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

2 引文 斯高帕斯(Scopus)

摘要

A testlet-based visual analogue scale (VAS) is a doubly bounded scaling approach (e.g., from 0% to 100% or from 0 to 1) composed of multiple adjectives, nouns, or sentences (statements/items) within testlets for measuring individuals’ attitudes, opinions, or career interests. While testlet-based VASs have many advantages over Likert scales, such as reducing response style effects, the development of proper statistical models for analyzing testlet-based VAS data lags behind. This paper proposes a novel beta copula model and a competing logit-normal model based on the item response theory framework, assessed by Bayesian parameter estimation, model comparison, and goodness-of-fit statistics. An empirical career interest dataset based on a testlet-based VAS design was analyzed using the proposed models. Simulation studies were conducted to assess the two models’ parameter recovery. The results show that the beta copula model had superior fit in the empirical data analysis, and also exhibited good parameter recovery in the simulation studies, suggesting that it is a promising statistical approach to testlet-based doubly bounded responses.

原文英語
頁(從 - 到)5309-5353
頁數45
期刊Behavior Research Methods
56
發行號6
DOIs
出版狀態已發佈 - 2024 9月

ASJC Scopus subject areas

  • 實驗與認知心理學
  • 發展與教育心理學
  • 藝術與人文(雜項)
  • 心理學(雜項)
  • 一般心理學

指紋

深入研究「Multidimensional item response theory models for testlet-based doubly bounded data」主題。共同形成了獨特的指紋。

引用此