Multi-Type Tree Partition Decision for H.266/VVC Inter Coding Based on Random Forest Classifiers

Chih Ming Lien*, Mei Juan Chen, Chieh Ming Yang, Rui Hong Hong, Yuan Hong Lin, Chia Hung Yeh

*此作品的通信作者

研究成果: 雜誌貢獻會議論文同行評審

摘要

The flexible coding unit block partition structure of the quadtree with nested multi-type tree (MTT) for the newest video coding standard H.266/versatile video coding (VVC) can provide better coding efficiency than that of H.265/high efficiency video coding (HEVC). However, the computational complexity increases markedly. This paper proposes a fast MTT partition algorithm based on machine learning for the inter prediction of the H.266/VVC encoder. The proposed approach utilizes Random Forest classifiers to skip the least necessary MTT split. Experimental results show that the proposed algorithm reduces the encoding time with negligible Bjontegaard delta bitrate (BDBR) under the random access configuration. The proposed method outperforms the previous work.

原文英語
頁(從 - 到)97-98
頁數2
期刊IET Conference Proceedings
2023
發行號35
DOIs
出版狀態已發佈 - 2023
事件2023 IET International Conference on Engineering Technologies and Applications, ICETA 2023 - Yunlin, 臺灣
持續時間: 2023 10月 212023 10月 23

ASJC Scopus subject areas

  • 一般工程

指紋

深入研究「Multi-Type Tree Partition Decision for H.266/VVC Inter Coding Based on Random Forest Classifiers」主題。共同形成了獨特的指紋。

引用此