Multi-Connection of Double Residual Block for YOLOv5 Object Detection

Cheng Lin Li, Chung Yen Su

研究成果: 書貢獻/報告類型會議論文篇章

摘要

In this paper, we propose a different method of deepening the network model of YOLOv5s6 and design three types of Multi-Connection (MC) blocks that are suitable for specific datasets. The main purpose of Multi-Connection block is to reuse features and retain input features for passing down. Eight public datasets and one customized dataset are experimented for verification. We improve the residual block in YOLOv5. The results show that the average precision (AP) can be increased. Compared with the YOLOv5s6, YOLOv5s6 with MC type I increases the AP by 1.6% in the Global Wheat Head Dataset 2020, YOLOv5s6 with MC type II increases the AP by 2.9% in the PlanDoc dataset, and YOLOv5s6 with MC type III increases the AP by 2.9% in the PASCAL Visual Object Classes (VOC) dataset. Using the multi-connection of double residual block performs better than the original residual block of YOLOv5s6.

原文英語
主出版物標題Proceedings of the 2022 8th International Conference on Applied System Innovation, ICASI 2022
編輯Shoou-Jinn Chang, Sheng-Joue Young, Artde Donald Kin-Tak Lam, Liang-Wen Ji, Stephen D. Prior
發行者Institute of Electrical and Electronics Engineers Inc.
頁面13-16
頁數4
ISBN(電子)9781665496506
DOIs
出版狀態已發佈 - 2022
事件8th International Conference on Applied System Innovation, ICASI 2022 - Nantou, 臺灣
持續時間: 2022 4月 212022 4月 23

出版系列

名字Proceedings of the 2022 8th International Conference on Applied System Innovation, ICASI 2022

會議

會議8th International Conference on Applied System Innovation, ICASI 2022
國家/地區臺灣
城市Nantou
期間2022/04/212022/04/23

ASJC Scopus subject areas

  • 人工智慧
  • 電腦網路與通信
  • 電腦科學應用
  • 硬體和架構
  • 電氣與電子工程
  • 電子、光磁材料
  • 控制和優化

指紋

深入研究「Multi-Connection of Double Residual Block for YOLOv5 Object Detection」主題。共同形成了獨特的指紋。

引用此