TY - JOUR
T1 - Millimetric and submillimetric observations of IRAS 05327+3404 "holoea" in M36
AU - Morata, O.
AU - Kuan, Y. J.
AU - Ho, P. T.P.
AU - Huang, H. C.
AU - Magnier, E. A.
AU - Zhao-Geisler, R.
PY - 2013/9
Y1 - 2013/9
N2 - The transition between the protostar, Class I, and the pre-main-sequence star, Class II, phases is still one of the most uncertain, and important, stages in the knowledge of the process of formation of an individual star because it is the stage that determines the final mass of the star. We observed the young stellar object "Holoea," associated with IRAS 05327+3404, which was classified as an object in the transition between the Class I and Class II phases with several unusual properties, and appears to be surrounded by large amounts of circumstellar material. We used the SMA and BIMA telescopes at millimeter and submillimeter (submm) wavelengths to observe the dust continuum emission and the CO (1-0) and (2-1), HCO+ (1-0) and (3-2), and HCN (1-0) transitions in the region around IRAS 05327+3404. We detected two continuum emission peaks at 1.1 mm: SMM 1, the submm counterpart of IRAS 05327+3404, and SMM 2, ∼6 arcsec to the west. The emissions of the three molecules show marked differences. The CO emission near the systemic velocity is filtered out by the telescopes, and CO mostly traces the high-velocity gas. The HCO+ and HCN emissions are more concentrated around the central parts of the region, and show several intensity peaks coincident with the submm continuum peaks. We identify two main molecular outflows: a bipolar outflow in an E-W direction that would be powered by SMM 1 and the other in a NE direction, which we associate with SMM 2. We propose that the SMM sources are probably Class I objects, with SMM 1 in an earlier evolutionary stage.
AB - The transition between the protostar, Class I, and the pre-main-sequence star, Class II, phases is still one of the most uncertain, and important, stages in the knowledge of the process of formation of an individual star because it is the stage that determines the final mass of the star. We observed the young stellar object "Holoea," associated with IRAS 05327+3404, which was classified as an object in the transition between the Class I and Class II phases with several unusual properties, and appears to be surrounded by large amounts of circumstellar material. We used the SMA and BIMA telescopes at millimeter and submillimeter (submm) wavelengths to observe the dust continuum emission and the CO (1-0) and (2-1), HCO+ (1-0) and (3-2), and HCN (1-0) transitions in the region around IRAS 05327+3404. We detected two continuum emission peaks at 1.1 mm: SMM 1, the submm counterpart of IRAS 05327+3404, and SMM 2, ∼6 arcsec to the west. The emissions of the three molecules show marked differences. The CO emission near the systemic velocity is filtered out by the telescopes, and CO mostly traces the high-velocity gas. The HCO+ and HCN emissions are more concentrated around the central parts of the region, and show several intensity peaks coincident with the submm continuum peaks. We identify two main molecular outflows: a bipolar outflow in an E-W direction that would be powered by SMM 1 and the other in a NE direction, which we associate with SMM 2. We propose that the SMM sources are probably Class I objects, with SMM 1 in an earlier evolutionary stage.
KW - ISM: clouds
KW - ISM: individual objects (IRAS 05327+3404)
KW - ISM: jets and outflows
KW - ISM: molecules
KW - stars: protostars
UR - http://www.scopus.com/inward/record.url?scp=84882752636&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84882752636&partnerID=8YFLogxK
U2 - 10.1088/0004-6256/146/3/49
DO - 10.1088/0004-6256/146/3/49
M3 - Article
AN - SCOPUS:84882752636
SN - 0004-6256
VL - 146
JO - Astronomical Journal
JF - Astronomical Journal
IS - 3
M1 - 49
ER -