Microstructuring characteristics of a chemically amplified photoresist synthesized for ultra-thick UV-LIGA applications

Chii Rong Yang*, Gen Wen Hsieh, Yu Sheng Hsieh, Yu Der Lee

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

9 引文 斯高帕斯(Scopus)

摘要

The thick-film photoresists are essential to fabricate high-aspect-ratio microstructures by the UV-LIGA process. However, current thick-film photoresists have some weaknesses including a thickness of only up to 100 μm, a poor line-width resolution and difficulty in being stripped. Consequently, a new type of thick-film photoresist is required. This work presents a novel positive-tone MMA/TBMA photoresist, formed by combining copolymerization and chemically amplification (CA) for use in the ultra-thick UV-LIGA process. An MMA/TBMA photoresist film with a thickness of 500 μm is easily achieved. For MMA/TBMA photoresist layers with thicknesses from 100 μm to 500 μm, an exposure dose from 80 to 100 mJ cm-2 per micron is required to remove all of the exposed photoresist, revealing that the selectivity between radiated and non-radiated zones during a long development process is sufficiently high; the sidewall vertically and aspect ratio of the microstructure are excellent; stress-induced cracks are not observed in the non-radiated zones after development. MMA/TBMA photoresist is demonstrated to fabricate open microstructures with aspect ratios of at least 10 and close microstructures with aspect ratios of not more than 10, such values of aspect ratio are still sufficient for most ultra-thick mold applications. Moreover, MMA/TBMA photoresist can undergo erosion by acidic electrolyte and easily be stripped using usual organic solvents. These findings demonstrate that MMA/TBMA photoresist has the potential to replace SU-8 resist in the ultra-thick UV-LIGA process.

原文英語
頁(從 - 到)1126-1134
頁數9
期刊Journal of Micromechanics and Microengineering
14
發行號8
DOIs
出版狀態已發佈 - 2004 8月

ASJC Scopus subject areas

  • 電子、光磁材料
  • 材料力學
  • 機械工業
  • 電氣與電子工程

指紋

深入研究「Microstructuring characteristics of a chemically amplified photoresist synthesized for ultra-thick UV-LIGA applications」主題。共同形成了獨特的指紋。

引用此