Microbial Biomass Is More Important than Runoff Export in Predicting Soil Inorganic Nitrogen Concentrations Following Forest Conversion in Subtropical China

Chao Xu, Teng Chiu Lin*, Jr Chuan Huang, Zhijie Yang, Xiaofei Liu, Decheng Xiong, Shidong Chen, Minhuang Wang, Liuming Yang, Yusheng Yang

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

1 引文 斯高帕斯(Scopus)

摘要

Elevated runoff export and declines in soil microbial biomass and enzyme activity following forest conversion are known to reduce soil inorganic nitrogen (N) but their relative importance remains poorly understood. To explore their relative importance, we examined soil inorganic N (NH4+ and NO3) concentrations in relation to microbial biomass, enzyme activity, and runoff export of inorganic N in a mature secondary forest, young (five years old) Castanopsis carlessi and Cunninghamia lanceolate (Chinese fir) plantations, and forests developing through assisted natural regeneration (ANR). The surface runoff export of inorganic N was greater, but fine root biomass, soil microbial biomass, enzyme activity, and inorganic N concentrations were smaller in the young plantations than the secondary forest and the young ANR forests. Microbial biomass, enzyme activity, and runoff inorganic N export explained 84% and 82% of the variation of soil NH4+ and NO3 − concentrations, respectively. Soil microbial biomass contributed 61% and 94% of the explaining power for the variation of soil NH4+ and NO3 concentrations, respectively, among the forests. Positive relationships between microbial enzyme activity and soil inorganic N concentrations were likely mediated via microbial biomass as it was highly correlated with microbial enzyme activity. Although surface runoff export can reduce soil inorganic N, the effect attenuated a few years after forest conversion. By contrast, the differences in microbial biomass persisted for a long time, leading to its dominance in regulating soil inorganic N concentrations. Our results highlight that most of the variation in soil inorganic N concentration following forest conversion was related to soil microbial biomass and that assisted natural regeneration can effectively conserve soil N.

原文英語
文章編號295
期刊Land
11
發行號2
DOIs
出版狀態已發佈 - 2022 2月

ASJC Scopus subject areas

  • 全球和行星變化
  • 生態學
  • 自然與景觀保護

指紋

深入研究「Microbial Biomass Is More Important than Runoff Export in Predicting Soil Inorganic Nitrogen Concentrations Following Forest Conversion in Subtropical China」主題。共同形成了獨特的指紋。

引用此