Maximum likelihood estimation of factor and ideal point models for paired comparison data

Rung Ching Tsai*, Ulf Böckenholt

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

12 引文 斯高帕斯(Scopus)

摘要

Many paired comparison data sets reported in the literature are obtained in a multiple judgment setting where each judge compares all possible item pairs one at a time. Despite the repeated measures structure of the data, typically the multiple judgments are analyzed under the strong assumption of independence. This disregard for dependencies in the paired comparison judgments is a serious model misspecification that may lead to incorrect statistical and substantive conclusions. Building on Takane's (1987, Cognition and Communication, 20, 45-62) analysis of covariance structures models, we present a variant of the Monte Carlo expectation maximization (MCEM) algorithm for estimating probabilistic paired comparison models of multiple paired comparison judgments. The MCEM algorithm is straightforward to implement and converges quickly even when the paired comparison data are sparse. A detailed analysis of a paired comparison experiment illustrates the usefulness of this approach for the interpretation of similarity and individual difference effects in preference data.

原文英語
頁(從 - 到)795-811
頁數17
期刊Journal of Mathematical Psychology
45
發行號6
DOIs
出版狀態已發佈 - 2001
對外發佈

ASJC Scopus subject areas

  • 一般心理學
  • 應用數學

指紋

深入研究「Maximum likelihood estimation of factor and ideal point models for paired comparison data」主題。共同形成了獨特的指紋。

引用此