摘要
We propose a novel, normally-off AlGaN/GaN high-electron-mobility transistor (HEMT) governed by polarization engineering. The fundamental concept is to grade the Al composition of the barrier layer from GaN to AlxGa1- xN, thereby alleviating the impact of piezoelectric polarization on the two-dimensional electron gas (2-DEG) and establishing a conduction-band profile well above the Fermi energy. These effects lead to a positive shift in the threshold voltage of the device and benefit the normally-off operation. It is observed that the device's DC transfer characteristics can be further modulated simply by adjusting the Al composition of the AlyGa1- yN cap layer and the p-type doping concentration at the top of the GaN buffer layer. These findings, based on a physical simulation of the proposed device, provide a guideline for the implementation of highly efficient, normally-off AlGaN/GaN HEMTs.
原文 | 英語 |
---|---|
頁(從 - 到) | 1-6 |
頁數 | 6 |
期刊 | Microelectronic Engineering |
卷 | 138 |
DOIs | |
出版狀態 | 已發佈 - 2015 4月 20 |
ASJC Scopus subject areas
- 電子、光磁材料
- 原子與分子物理與光學
- 凝聚態物理學
- 表面、塗料和薄膜
- 電氣與電子工程