Manifold learning, A promised land or work in progress?

Mei Chen Yeh*, I. Hsiang Lee, Gang Wu, Yi Wu, Edward Y. Chang

*此作品的通信作者

研究成果: 書貢獻/報告類型會議論文篇章

15 引文 斯高帕斯(Scopus)

摘要

Tasks of image clustering and classification often deal with data of very high dimensions. To alleviate the dimensionality curse, several methods, such as Isomap, LLE and KPCA, have recently been proposed and applied to learn low-dimensional, non-linear embedded manifolds in high-dimensional spaces. Unfortunately, the scenarios in which these methods appear to be effective are very contrived. In this work, we empirically examine these methods on a realistic but not-so-difficult dataset. We discuss the promises and limitations of these dimensionreduction schemes.

原文英語
主出版物標題IEEE International Conference on Multimedia and Expo, ICME 2005
頁面1154-1157
頁數4
DOIs
出版狀態已發佈 - 2005
對外發佈
事件IEEE International Conference on Multimedia and Expo, ICME 2005 - Amsterdam, 荷兰
持續時間: 2005 7月 62005 7月 8

出版系列

名字IEEE International Conference on Multimedia and Expo, ICME 2005
2005

其他

其他IEEE International Conference on Multimedia and Expo, ICME 2005
國家/地區荷兰
城市Amsterdam
期間2005/07/062005/07/08

ASJC Scopus subject areas

  • 工程 (全部)

引用此