Low-Temperature Observation of the Excited-State Decay of Ruthenium-(Mono-2,2′:6′,2″-Terpyridine) Ions with Innocent Ligands: DFT Modeling of an 3MLCT-3MC Intersystem Crossing Pathway

Chi Wei Yin*, Ming Kang Tsai*, Yuan Jang Chen*

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

5 引文 斯高帕斯(Scopus)

摘要

The synthesis, electrochemistry, and photophysical characterization of five 2,2′:6′,2″-terpyridine ruthenium complexes (Ru-tpy complexes) is reported. The electrochemical and photophysical behavior varied depending on the ligands, i.e., amine (NH3), acetonitrile (AN), and bis(pyrazolyl)methane (bpm), for this series of Ru-tpy complexes. The target [Ru(tpy)(AN)3]2+ and [Ru(tpy)(bpm)(AN)]2+ complexes were found to have low-emission quantum yields in low-temperature observations. To better understand this phenomenon, density functional theory (DFT) calculations were performed to simulate the singlet ground state (S0), Te, and metal-centered excited states (3MC) of these complexes. The calculated energy barriers between Te and the low-lying 3MC state for [Ru(tpy)(AN)3]2+ and [Ru(tpy)(bpm)(AN)]2+ provided clear evidence in support of their emitting state decay behavior. Developing a knowledge of the underlying photophysics of these Ru-tpy complexes will allow new complexes to be designed for use in photophysical and photochemical applications in the future.

原文英語
頁(從 - 到)11623-11633
頁數11
期刊ACS Omega
8
發行號12
DOIs
出版狀態已發佈 - 2023 3月 28

ASJC Scopus subject areas

  • 一般化學
  • 一般化學工程

指紋

深入研究「Low-Temperature Observation of the Excited-State Decay of Ruthenium-(Mono-2,2′:6′,2″-Terpyridine) Ions with Innocent Ligands: DFT Modeling of an 3MLCT-3MC Intersystem Crossing Pathway」主題。共同形成了獨特的指紋。

引用此