Low temperature Mössbauer spectroscopic studies on Sm3+ doped Zn-Mn ferrites

V. Jagadeesha Angadi, S. P. Kubrin, D. A. Sarychev, Shidaling Matteppanavar, B. Rudraswamy, Hsiang Lin Liu, K. Praveena*


研究成果: 雜誌貢獻期刊論文同行評審

18 引文 斯高帕斯(Scopus)


For the first time, we report on the low temperature Mössbauer spectroscopic study of Zn2+0.5Mn2+0.5Sm3+xFe3+2−xO4 (where x = 0.01–0.05) prepared by the modified solution combustion method using a mixture of urea and glucose as a fuel. The Mössbauer spectroscopy at room and low temperatures was applied to understand the magnetic properties of the samples. The room temperature Mössbauer spectroscopy results suggest that the occupation of the octahedral sites by Sm3+ ions leads to the distortion enhancement of 57Fe nuclei environments, which leads to an increase in quadrupole splitting Δ values of D2 and D3 doublets. The low temperature Mössbauer spectroscopy results indicate that the presence of Sm3+ ions in the octahedron sites causes the decrease in the number of Fe–O–Fe chains. The transformation of Mössbauer spectra doublets into Zeeman sextets is accompanied by a significant decrease in the magnitude IM of Mössbauer spectra intensity within the 0–1.2 mm/s velocity range normalized to its value at 300 K. This drop in the temperature dependence of IM allows one to obtain the magnetic phase transition temperature TM from the Mössbauer experiment.

頁(從 - 到)348-355
期刊Journal of Magnetism and Magnetic Materials
出版狀態已發佈 - 2017 11月 1

ASJC Scopus subject areas

  • 電子、光磁材料
  • 凝聚態物理學


深入研究「Low temperature Mössbauer spectroscopic studies on Sm3+ doped Zn-Mn ferrites」主題。共同形成了獨特的指紋。