Low-complexity video coding via power-rate-distortion optimization

Li Wei Kang, Chun Shien Lu, Chih Yang Lin*

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

7 引文 斯高帕斯(Scopus)

摘要

Wireless multimedia sensor networks (WMSNs) have been potentially applicable for several emerging applications. The resources, i.e., power and bandwidth available to visual sensors in a WMSN are, however, very limited. Hence, it is important but challenging to achieve efficient resource allocation and optimal video data compression while maximizing the overall network lifetime. In this paper, a power-rate-distortion (PRD) optimized resource-scalable low-complexity multiview video encoding scheme is proposed. In our video encoder, both the temporal and interview information can be exploited based on the comparisons of extracted media hashes without performing motion and disparity estimations, which are known to be time-consuming. We present a PRD model to characterize the relationship between the available resources and the RD performance of our encoder. More specifically, an RD function in terms of the percentages for different coding modes of blocks and the target bit rate under the available resource constraints is derived for optimal coding mode decision. The major goal here is to design a PRD model to optimize a "motion estimation-free" low-complexity video encoder for applications with resource-limited devices, instead of designing a general-purpose video codec to compete compression performance against current compression standards (e.g., H.264/AVC). Analytic results verify the accuracy of our PRD model, which can provide a theoretical guideline for performance optimization under limited resource constraints. Simulation results on joint RD performance and power consumption (measured in terms of encoding time) demonstrate the applicability of our video coding scheme for WMSNs.

原文英語
頁(從 - 到)569-585
頁數17
期刊Journal of Visual Communication and Image Representation
23
發行號3
DOIs
出版狀態已發佈 - 2012 4月
對外發佈

ASJC Scopus subject areas

  • 訊號處理
  • 媒體技術
  • 電腦視覺和模式識別
  • 電氣與電子工程

指紋

深入研究「Low-complexity video coding via power-rate-distortion optimization」主題。共同形成了獨特的指紋。

引用此