Lightweight Deep Neural Network for Joint Learning of Underwater Object Detection and Color Conversion

Chia Hung Yeh, Chu Han Lin, Li Wei Kang, Chih Hsiang Huang, Min Hui Lin, Chuan Yu Chang, Chua Chin Wang

研究成果: 雜誌貢獻期刊論文同行評審

48 引文 斯高帕斯(Scopus)


Underwater image processing has been shown to exhibit significant potential for exploring underwater environments. It has been applied to a wide variety of fields, such as underwater terrain scanning and autonomous underwater vehicles (AUVs)-driven applications, such as image-based underwater object detection. However, underwater images often suffer from degeneration due to attenuation, color distortion, and noise from artificial lighting sources as well as the effects of possibly low-end optical imaging devices. Thus, object detection performance would be degraded accordingly. To tackle this problem, in this article, a lightweight deep underwater object detection network is proposed. The key is to present a deep model for jointly learning color conversion and object detection for underwater images. The image color conversion module aims at transforming color images to the corresponding grayscale images to solve the problem of underwater color absorption to enhance the object detection performance with lower computational complexity. The presented experimental results with our implementation on the Raspberry pi platform have justified the effectiveness of the proposed lightweight jointly learning model for underwater object detection compared with the state-of-the-art approaches.

頁(從 - 到)6129-6143
期刊IEEE Transactions on Neural Networks and Learning Systems
出版狀態已發佈 - 2022 11月 1

ASJC Scopus subject areas

  • 軟體
  • 電腦科學應用
  • 電腦網路與通信
  • 人工智慧


深入研究「Lightweight Deep Neural Network for Joint Learning of Underwater Object Detection and Color Conversion」主題。共同形成了獨特的指紋。