Lightweight and resource-constrained learning network for face recognition with performance optimization

Hsiao Chi Li, Zong Yue Deng, Hsin Han Chiang*

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

25 引文 斯高帕斯(Scopus)

摘要

Despite considerable progress in face recognition technology in recent years, deep learning (DL) and convolutional neural networks (CNN) have revealed commendable recognition effects with the advent of artificial intelligence and big data. FaceNet was presented in 2015 and is able to significantly improve the accuracy of face recognition, while also being powerfully built to counteract several common issues, such as occlusion, blur, illumination change, and different angles of head pose. However, not all hardware can sustain the heavy computing load in the execution of the FaceNet model. In applications in the security industry, lightweight and efficient face recognition are two key points for facilitating the deployment of DL and CNN models directly in field devices, due to their limited edge computing capability and low equipment cost. To this end, this paper provides a lightweight learning network improved from FaceNet, which is called FN13, to break through the hardware limitation of constrained computational resources. The proposed FN13 takes the advantage of center loss to reduce the variations of the between-class features and enlarge the difference of the within-class features, instead of the triplet loss by using FaceNet. The resulting model reduces the number of parameters and maintains a high degree of accuracy, only requiring few grayscale reference images per subject. The validity of FN13 is demonstrated by conducting experiments on the Labeled Faces in the Wild (LFW) dataset, as well as an analytical discussion regarding specific disguise problems.

原文英語
文章編號6114
頁(從 - 到)1-20
頁數20
期刊Sensors (Switzerland)
20
發行號21
DOIs
出版狀態已發佈 - 2020 11月 1

ASJC Scopus subject areas

  • 分析化學
  • 生物化學
  • 原子與分子物理與光學
  • 儀器
  • 電氣與電子工程

指紋

深入研究「Lightweight and resource-constrained learning network for face recognition with performance optimization」主題。共同形成了獨特的指紋。

引用此