Leveraging relevance cues for improved spoken document retrieval

Pei Ning Chen*, Kuan Yu Chen, Berlin Chen

*此作品的通信作者

研究成果: 雜誌貢獻會議論文同行評審

7 引文 斯高帕斯(Scopus)

摘要

Spoken document retrieval (SDR) has emerged as an active area of research in the speech processing community. The fundamental problems facing SDR are generally three-fold: 1) a query is often only a vague expression of an underlying information need, 2) there probably would be word usage mismatch between a query and a spoken document even if they are topically related to each other, and 3) the imperfect speech recognition transcript carries wrong information and thus deviates somewhat from representing the true theme of a spoken document. To mitigate the above problems, in this paper, we study a novel use of a relevance language modeling framework for SDR. It not only inherits the merits of several existing techniques but also provides a flexible but systematic way to render the lexical and topical relationships between a query and a spoken document. Moreover, we also investigate representing the query and documents with different granularities of index features to work in conjunction with the various relevance cues. Experiments conducted on the TDT SDR task show promise of the methods deduced from our retrieval framework when compared with a few existing retrieval methods.

原文英語
頁(從 - 到)929-932
頁數4
期刊Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
出版狀態已發佈 - 2011
事件12th Annual Conference of the International Speech Communication Association, INTERSPEECH 2011 - Florence, 意大利
持續時間: 2011 8月 272011 8月 31

ASJC Scopus subject areas

  • 語言與語言學
  • 人機介面
  • 訊號處理
  • 軟體
  • 建模與模擬

指紋

深入研究「Leveraging relevance cues for improved spoken document retrieval」主題。共同形成了獨特的指紋。

引用此