TY - JOUR
T1 - Leakage current mechanism and effect of Y2O3 doped with Zr high-K gate dielectrics
AU - Lin, K. C.
AU - Juan, P. C.
AU - Liu, C. H.
AU - Wang, M. C.
AU - Chou, C. H.
N1 - Publisher Copyright:
© 2015 Elsevier Ltd. All rights reserved.
PY - 2015
Y1 - 2015
N2 - In this study, a Y2O3 film doped with Zr was fabricated to form two stacked structures, Al/ZrN/Y2O3 + Zr/Y2O3/p-Si (with Zr in the upper layer) and Al/ZrN/Y2O3/Y2O3 + Zr/p-Si (with Zr in the lower layer), at rapid thermal annealing (RTA) temperature range of 550, 700, and 850 °C. To analyze the leakage current mechanism, leakage current versus voltage (I-V) and capacitance versus voltage (C-V) characteristics of these two structures were first investigated. By analyzing Schottky emission (SE) and the fit of its equation with experimental data and parameters, dielectric constants were computed to be 11.3 and 6.34, equivalent oxide thicknesses (EOTs) were determined to be 2.42 and 4.3 nm, Schottky barrier heights were calculated to be 0.81 and 0.82 eV, and dynamic dielectric constants were determined to be 13 and 8 for structures with Zr in the upper and lower layers, respectively. By analyzing Poole-Frenkel (P-F) emission and the fit of its equation with experimental data and parameters, trap energy levels were computed to be 0.45 and 0.5 eV, and dynamic dielectric constants were determined to be 1.65 and 2.61 for structures with Zr in the upper and lower layers, respectively. The characteristics of ln(J/T2) versus E0.5 and ln(J/T2) versus 1000T in SE and P-F emission were linear, thus conforming to the theoretical equations. Finally, the results of computed parameters in the two structures were compared to validate the leakage current mechanism.
AB - In this study, a Y2O3 film doped with Zr was fabricated to form two stacked structures, Al/ZrN/Y2O3 + Zr/Y2O3/p-Si (with Zr in the upper layer) and Al/ZrN/Y2O3/Y2O3 + Zr/p-Si (with Zr in the lower layer), at rapid thermal annealing (RTA) temperature range of 550, 700, and 850 °C. To analyze the leakage current mechanism, leakage current versus voltage (I-V) and capacitance versus voltage (C-V) characteristics of these two structures were first investigated. By analyzing Schottky emission (SE) and the fit of its equation with experimental data and parameters, dielectric constants were computed to be 11.3 and 6.34, equivalent oxide thicknesses (EOTs) were determined to be 2.42 and 4.3 nm, Schottky barrier heights were calculated to be 0.81 and 0.82 eV, and dynamic dielectric constants were determined to be 13 and 8 for structures with Zr in the upper and lower layers, respectively. By analyzing Poole-Frenkel (P-F) emission and the fit of its equation with experimental data and parameters, trap energy levels were computed to be 0.45 and 0.5 eV, and dynamic dielectric constants were determined to be 1.65 and 2.61 for structures with Zr in the upper and lower layers, respectively. The characteristics of ln(J/T2) versus E0.5 and ln(J/T2) versus 1000T in SE and P-F emission were linear, thus conforming to the theoretical equations. Finally, the results of computed parameters in the two structures were compared to validate the leakage current mechanism.
KW - Poole-Frenkel emission
KW - Schottky emission
KW - YO
UR - http://www.scopus.com/inward/record.url?scp=84939203747&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84939203747&partnerID=8YFLogxK
U2 - 10.1016/j.microrel.2015.07.045
DO - 10.1016/j.microrel.2015.07.045
M3 - Article
AN - SCOPUS:84939203747
SN - 0026-2714
VL - 55
SP - 2198
EP - 2202
JO - Microelectronics Reliability
JF - Microelectronics Reliability
IS - 11
ER -