Large Ecosystem Service Benefits of Assisted Natural Regeneration

Yusheng Yang*, Lixin Wang, Zhijie Yang, Chao Xu, Jingsheng Xie, Guangshui Chen, Chengfang Lin, Jianfen Guo, Xiaofei Liu, Decheng Xiong, Weisheng Lin, Shidong Chen, Zongming He, Kaimiao Lin, Miaohua Jiang, Teng Chiu Lin

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

15 引文 斯高帕斯(Scopus)

摘要

China manages the largest monoculture plantations in the world, with 24% being Chinese fir plantations. Maximizing the ecosystem services of Chinese fir plantations has important implications in global carbon cycle and biodiversity protection. Assisted natural regeneration (ANR) is a practice to convert degraded lands into more productive forests with great ecosystems services. However, the quantitative understanding of ANR ecosystem service benefits is very limited. We conducted a comprehensive field manipulation experiment to evaluate the ANR potentials. We quantified and compared key ecosystem services including surface runoff, sediment yield, dissolved organic carbon export, plant diversity, and aboveground carbon accumulation of ANR of secondary forests dominated by Castanopsis carlesii to that of Chinese fir and C. carlesii plantations. Our results showed that ANR of C. carlesii forest reduced surface runoff and sediment yield up to 50% compared with other young plantations in the first 3 years and substantially increased plant diversity. ANR also reduced the export of dissolved organic carbon by 60–90% in the first 2 years. Aboveground biomass of the young ANR forest was approximately 3–4 times of that of other young plantations, while aboveground biomass of mature ANR forests was approximately 1.4 times of that of mature Chinese fir plantations of the same age. If all Chinese fir plantations in China were replaced by ANR forests, potentially 0.7 Pg more carbon will be stored in aboveground in one rotation (25 years). The results indicate that ANR triggers positive feedbacks among soil and water conservation, biodiversity protection, and biomass accumulation and thereby enhances ecosystem services.

原文英語
頁(從 - 到)676-687
頁數12
期刊Journal of Geophysical Research: Biogeosciences
123
發行號2
DOIs
出版狀態已發佈 - 2018 二月

ASJC Scopus subject areas

  • 土壤科學
  • 森林科學
  • 水科學與技術
  • 古生物學
  • 大氣科學
  • 海洋科學
  • 生態學

指紋

深入研究「Large Ecosystem Service Benefits of Assisted Natural Regeneration」主題。共同形成了獨特的指紋。

引用此