Investigation into anti-dust wetting surface with coral-like nanostructures reinforced by electrospun composite nanofibers

Zhao Chi Chen, Tien Li Chang*, Hsin Sheng Lee, Jing Yuan Fan, Chien Ping Wang

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

摘要

Controlling the interaction of wetting surface with biomaterials is one of the key challenges in nanostructures to promote non-toxic and one-step fabrication technology. Here, a range spectrum of surface wettability characteristics and nanostructure modalities were demonstrated with a single treatment of glutaraldehyde (GA) on polyvinyl alcohol, poly (3,4-ethylene dioxythiophene)-poly (styrene sulfonate) (PVA/PEDOT:PSS) nanofiber mats. By modulating the density of coral-like dendritic nanostructure formation functionalized on PVA and PVA/PEDOT:PSS composite nanofibers and the degree of cross-linking between PVA/PEDOT:PSS and GA, the normally super hydrophilic behavior can be modified to show increasing hydrophobic characteristics correlating with an increased concentration of GA. The results of this study indicated the possibility and applicability of wettability effects available to a single application process alone, where the unique anti-dust wetting behavior can be predicted by estimating the adhesion force (~ maximum value of 24.20 μN) of water droplet. As a result of these nanostructure formations, the water droplet can exhibit hysteresis (CAr = 38 ± 0.5°, CAa = 106 ± 0.5°) and adhere to the nanofiber surface of glass substrate. This task may contribute to its potential optimization for use in a large range of future surface treatment for bio-coating and bio-sensing applications.

原文英語
頁(從 - 到)2601-2612
頁數12
期刊International Journal of Advanced Manufacturing Technology
118
發行號7-8
DOIs
出版狀態已發佈 - 2022 2月

ASJC Scopus subject areas

  • 控制與系統工程
  • 軟體
  • 機械工業
  • 電腦科學應用
  • 工業與製造工程

指紋

深入研究「Investigation into anti-dust wetting surface with coral-like nanostructures reinforced by electrospun composite nanofibers」主題。共同形成了獨特的指紋。

引用此