TY - JOUR
T1 - Intensity of eccentric exercise, shift of optimum angle, and the magnitude of repeated-bout effect
AU - Chen, Trevor C.
AU - Nosaka, Kazunori
AU - Sacco, Paul
PY - 2007/3
Y1 - 2007/3
N2 - This study compared the effect of four different intensities of initial eccentric exercise (ECC1) on optimum angle shift and extent of muscle damage induced by subsequent maximal eccentric exercise. Fifty-two male students were placed into 100%, 80%, 60%, or 40% groups (n = 13 per group), performing 30 eccentric actions of the elbow flexors of 100%, 80%, 60%, or 40% of maximal isometric strength [maximal voluntary contraction (MVC)] for ECC1, followed 2-3 wk later by a similar exercise (ECC2) that used 100% MVC load. MVC at six elbow joint angles, range of motion, upper arm circumference, serum creatine kinase activity, myoglobin concentration, and muscle soreness were measured before and for 5 days following ECC1 and ECC2. A rightward shift of optimum angle following ECC1 was significantly (P < 0.05) greater for the 100% and 80% than for the 60% and 40% groups, and it decreased significantly (P < 0.05) from immediately to 5 days postexercise. By the time ECC2 was performed, only the 100% group kept a significant shift (4°). Changes in most of the criterion measures following ECC1 were significantly greater for the 100% and 80% groups compared with the 60% and 40% groups. Changes in the criterion measures following ECC2 were significantly (P < 0.05) greater for the 40% group compared with other groups. Although the magnitude of repeated bout effect following ECC2 was significantly (P < 0.05) smaller for the 40% and 60% groups, all groups showed significantly (P < 0.05) reduced changes in criterion measures following ECC2 compared with the ECC1 100% bout. We conclude that the repeated-bout effect was not dependent on the shift of optimum angle.
AB - This study compared the effect of four different intensities of initial eccentric exercise (ECC1) on optimum angle shift and extent of muscle damage induced by subsequent maximal eccentric exercise. Fifty-two male students were placed into 100%, 80%, 60%, or 40% groups (n = 13 per group), performing 30 eccentric actions of the elbow flexors of 100%, 80%, 60%, or 40% of maximal isometric strength [maximal voluntary contraction (MVC)] for ECC1, followed 2-3 wk later by a similar exercise (ECC2) that used 100% MVC load. MVC at six elbow joint angles, range of motion, upper arm circumference, serum creatine kinase activity, myoglobin concentration, and muscle soreness were measured before and for 5 days following ECC1 and ECC2. A rightward shift of optimum angle following ECC1 was significantly (P < 0.05) greater for the 100% and 80% than for the 60% and 40% groups, and it decreased significantly (P < 0.05) from immediately to 5 days postexercise. By the time ECC2 was performed, only the 100% group kept a significant shift (4°). Changes in most of the criterion measures following ECC1 were significantly greater for the 100% and 80% groups compared with the 60% and 40% groups. Changes in the criterion measures following ECC2 were significantly (P < 0.05) greater for the 40% group compared with other groups. Although the magnitude of repeated bout effect following ECC2 was significantly (P < 0.05) smaller for the 40% and 60% groups, all groups showed significantly (P < 0.05) reduced changes in criterion measures following ECC2 compared with the ECC1 100% bout. We conclude that the repeated-bout effect was not dependent on the shift of optimum angle.
KW - Delayed-onset muscle soreness
KW - Elbow flexors
KW - Length-tension relationship
KW - Maximal isometric strength
KW - Muscle damage
UR - http://www.scopus.com/inward/record.url?scp=33847744270&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33847744270&partnerID=8YFLogxK
U2 - 10.1152/japplphysiol.00425.2006
DO - 10.1152/japplphysiol.00425.2006
M3 - Article
C2 - 17138839
AN - SCOPUS:33847744270
SN - 8750-7587
VL - 102
SP - 992
EP - 999
JO - Journal of Applied Physiology
JF - Journal of Applied Physiology
IS - 3
ER -