Improve Hole Collection by Interfacial Chemical Redox Reaction at a Mesoscopic NiO/CH3NH3PbI3 Heterojunction for Efficient Photovoltaic Cells

Ming Wei Lin, Kuo Chin Wang, Jeng Han Wang, Ming Hsien Li, Yu Ling Lai, Takuji Ohigashi, Nobuhiro Kosugi, Peter Chen*, Der Hsin Wei, Tzung Fang Guo, Yao Jane Hsu

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

14 引文 斯高帕斯(Scopus)

摘要

Organometal-trihalide-perovskite-based solar cells have exhibited high efficiencies when incorporated into mesoscopic NiO (NiOnc) hole-transport layers. The integration of a NiOnc-perovskite heterojunction provides an inorganic alternative as a p-type contact material with efficient hole extraction for perovskite-based solar cells. Herein the origin of such highly efficient carrier transport is studied in terms of electronic, chemical and transport properties of a NiOnc-perovskite heterojunction with X-ray photoelectron spectra, ultraviolet photoelectron spectra, near-edge X-ray absorption fine structure spectra, a scanning transmission X-ray microscope, and calculations of electronic structure. A pronounced chemical redox reaction is found at an NiOnc-perovskite heterojunction such that PbI2 is oxidized to PbO with subsequent formation of hole-dopant CH3NH3PbI3–2δOδ at the heterojunction. The generation of hole-doping CH3NH3PbI3–2δOδ induced by the redox reaction at the NiOnc/perovskite heterojunction plays a significant role to facilitate the carrier transport, and thus enhances the photovoltaic efficiencies.

原文英語
文章編號1600135
期刊Advanced Materials Interfaces
3
發行號17
DOIs
出版狀態已發佈 - 2016 9月 6

ASJC Scopus subject areas

  • 材料力學
  • 機械工業

指紋

深入研究「Improve Hole Collection by Interfacial Chemical Redox Reaction at a Mesoscopic NiO/CH3NH3PbI3 Heterojunction for Efficient Photovoltaic Cells」主題。共同形成了獨特的指紋。

引用此