Imbalanced Data for Knowledge Tracing

Jyun Yi Chen, I. Wei Lai*

*此作品的通信作者

研究成果: 書貢獻/報告類型會議論文篇章

摘要

In the realm of Intelligent Tutoring Systems (ITS), Knowledge Tracing (KT) techniques play a vital role in tracking and assessing student progress and understanding of a subject. However, in practice various data classes are generally collected in a way of underrepresentation, leading to the KT performance degradation. In this work, we propose a data deduplication technique to balance the inputs to improve the KT performance. Our experimental results confirm the efficacy of the proposed scheme in addressing imbalanced data and improving KT performance.

原文英語
主出版物標題2023 International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2023 - Proceedings
發行者Institute of Electrical and Electronics Engineers Inc.
頁面801-802
頁數2
ISBN(電子)9798350324174
DOIs
出版狀態已發佈 - 2023
事件2023 International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2023 - Pingtung, 臺灣
持續時間: 2023 7月 172023 7月 19

出版系列

名字2023 International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2023 - Proceedings

會議

會議2023 International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2023
國家/地區臺灣
城市Pingtung
期間2023/07/172023/07/19

ASJC Scopus subject areas

  • 人工智慧
  • 人機介面
  • 資訊系統
  • 資訊系統與管理
  • 電氣與電子工程
  • 媒體技術
  • 儀器

指紋

深入研究「Imbalanced Data for Knowledge Tracing」主題。共同形成了獨特的指紋。

引用此