TY - JOUR
T1 - Igneous Rock Associations 28. Construction of a Venusian Greenstone Belt
T2 - A Petrological Perspective
AU - Shellnutt, J. Gregory
N1 - Publisher Copyright:
© 2021 GAC/AGC®.
PY - 2021
Y1 - 2021
N2 - The crustal evolution of Venus appears to be principally driven by intraplate processes that may be related to mantle upwelling as there is no physiographic (i.e. mid-ocean ridge, volcanic arc) evidence of Earth-like plate tectonics. Rocks with basaltic composition were identified at the Venera 9, 10, 13, and 14, and Vega 1 and 2 landing sites whereas the rock encountered at the Venera 8 landing site may be silicic. The Venera 14 rock is chemically indistinguishable from terrestrial olivine tholeiite but bears a strong resemblance to basalt from terrestrial Archean greenstone belts. Forward petrological modeling (i.e. fractional crystallization and partial melting) and primary melt composition calculations using the rock compo- sitions of Venus can yield results indistinguishable from many volcanic (ultramafic, intermediate, silicic) and plutonic (tonalite, trondhjemite, granodiorite, anorthosite) rocks that typify Archean greenstone belts. Evidence of chemically pre-cipitated (carbonate, evaporite, chert, banded-iron formation) and clastic (sandstone, shale) sedimentary rocks is scarce to absent, but their existence is dependent upon an ancient Venusian hydrosphere. Nevertheless, it appears that the volcanic– volcaniclastic–plutonic portion of terrestrial greenstone belts can be constructed from the known surface compositions of Venusian rocks and suggests that it is possible that Venus and Early Earth had parallel evolutionary tracks in the growth of proto-continental crust.
AB - The crustal evolution of Venus appears to be principally driven by intraplate processes that may be related to mantle upwelling as there is no physiographic (i.e. mid-ocean ridge, volcanic arc) evidence of Earth-like plate tectonics. Rocks with basaltic composition were identified at the Venera 9, 10, 13, and 14, and Vega 1 and 2 landing sites whereas the rock encountered at the Venera 8 landing site may be silicic. The Venera 14 rock is chemically indistinguishable from terrestrial olivine tholeiite but bears a strong resemblance to basalt from terrestrial Archean greenstone belts. Forward petrological modeling (i.e. fractional crystallization and partial melting) and primary melt composition calculations using the rock compo- sitions of Venus can yield results indistinguishable from many volcanic (ultramafic, intermediate, silicic) and plutonic (tonalite, trondhjemite, granodiorite, anorthosite) rocks that typify Archean greenstone belts. Evidence of chemically pre-cipitated (carbonate, evaporite, chert, banded-iron formation) and clastic (sandstone, shale) sedimentary rocks is scarce to absent, but their existence is dependent upon an ancient Venusian hydrosphere. Nevertheless, it appears that the volcanic– volcaniclastic–plutonic portion of terrestrial greenstone belts can be constructed from the known surface compositions of Venusian rocks and suggests that it is possible that Venus and Early Earth had parallel evolutionary tracks in the growth of proto-continental crust.
UR - http://www.scopus.com/inward/record.url?scp=85123933878&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85123933878&partnerID=8YFLogxK
U2 - 10.12789/geocanj.2021.48.176
DO - 10.12789/geocanj.2021.48.176
M3 - Article
AN - SCOPUS:85123933878
SN - 0315-0941
VL - 48
SP - 97
EP - 116
JO - Geoscience Canada
JF - Geoscience Canada
IS - 3
ER -