Human Action Recognition On Edge Devices: A Novel Light-Weight Model

Hoangcong Le, Chen Chien Hsu*, Cheng Kai Lu, Wei Yen Wang, Pin Yen Monica Kuo

*此作品的通信作者

研究成果: 書貢獻/報告類型會議論文篇章

摘要

Human action recognition (HAR) is an evolving technology with the potential to revolutionize how we understand human behavior, which finds applications across various domains such as elderly care, surveillance systems, and human-robot interaction. As HAR continues to advance, there's a growing interest in integrating it into Internet of Things (IoT) systems. To minimize response time between clients and servers, researchers have explored embedding models into edge devices, yet achieving optimal results remains a challenge. Balancing model size and performance is particularly problematic; while reducing parameters can limit model complexity, larger models often yield superior performance, posing challenges for implementation on memory-constrained edge devices. In this paper, we introduce a novel lightweight framework specifically designed to address these challenges. Through experimentation on a renowned benchmark dataset (JHMDB), our proposed approach demonstrates both superior performance and minimal model size.

原文英語
主出版物標題GCCE 2024 - 2024 IEEE 13th Global Conference on Consumer Electronics
發行者Institute of Electrical and Electronics Engineers Inc.
頁面910-911
頁數2
ISBN(電子)9798350355079
DOIs
出版狀態已發佈 - 2024
事件13th IEEE Global Conference on Consumer Electronic, GCCE 2024 - Kitakyushu, 日本
持續時間: 2024 10月 292024 11月 1

出版系列

名字GCCE 2024 - 2024 IEEE 13th Global Conference on Consumer Electronics

會議

會議13th IEEE Global Conference on Consumer Electronic, GCCE 2024
國家/地區日本
城市Kitakyushu
期間2024/10/292024/11/01

ASJC Scopus subject areas

  • 人工智慧
  • 電腦視覺和模式識別
  • 人機介面
  • 訊號處理
  • 電氣與電子工程
  • 媒體技術
  • 儀器

指紋

深入研究「Human Action Recognition On Edge Devices: A Novel Light-Weight Model」主題。共同形成了獨特的指紋。

引用此