TY - JOUR
T1 - Hawking flux from a black hole with nonlinear supertranslation hair
AU - Lin, Feng Li
AU - Takeuchi, Shingo
N1 - Publisher Copyright:
© 2020 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP3.
PY - 2020/8/15
Y1 - 2020/8/15
N2 - We study the Hawking flux from a black hole with soft hair by the anomaly cancellation method proposed by Robinson and Wilczek. Unlike the earlier studies considering the black hole with linear supertranslation hair, our study takes into account the supertranslation hair to the quadratic order, which then yields the angular dependent horizon. As a result, highly nontrivial kinetic-mixings appear among the spherical Kaluza-Klein modes of the (1+1)d near-horizon reduced theory, which obscures the traditional derivation of the Hawking flux. However, after a series of field redefinitions, we can disentangle the mode-mixings into canonical normal modes, but the reduced metrics for these normal modes are mode-dependent. Despite of this, the resultant Hawking flux turns out to be mode-independent and remains the same as the Schwarzschild's one. Thus, one cannot tell the black holes with nonlinear supertranslation hairs from the Schwarzschild's one by examining the Hawking flux, so that the nonlinear soft hairs can be thought as the microstates.
AB - We study the Hawking flux from a black hole with soft hair by the anomaly cancellation method proposed by Robinson and Wilczek. Unlike the earlier studies considering the black hole with linear supertranslation hair, our study takes into account the supertranslation hair to the quadratic order, which then yields the angular dependent horizon. As a result, highly nontrivial kinetic-mixings appear among the spherical Kaluza-Klein modes of the (1+1)d near-horizon reduced theory, which obscures the traditional derivation of the Hawking flux. However, after a series of field redefinitions, we can disentangle the mode-mixings into canonical normal modes, but the reduced metrics for these normal modes are mode-dependent. Despite of this, the resultant Hawking flux turns out to be mode-independent and remains the same as the Schwarzschild's one. Thus, one cannot tell the black holes with nonlinear supertranslation hairs from the Schwarzschild's one by examining the Hawking flux, so that the nonlinear soft hairs can be thought as the microstates.
UR - http://www.scopus.com/inward/record.url?scp=85092527401&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85092527401&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.102.044004
DO - 10.1103/PhysRevD.102.044004
M3 - Article
AN - SCOPUS:85092527401
SN - 2470-0010
VL - 102
JO - Physical Review D
JF - Physical Review D
IS - 4
M1 - 044004
ER -