TY - JOUR
T1 - Green tea extract supplement reduces D-galactosamine-induced acute liver injury by inhibition of apoptotic and proinflammatory signaling
AU - Lin, Bor Ru
AU - Yu, Chia Jung
AU - Chen, Wang Chuan
AU - Lee, Hsuan Shu
AU - Chang, Huei Min
AU - Lee, Yen Chih
AU - Chien, Chiang Ting
AU - Chen, Chau Fong
N1 - Funding Information:
This work was supported in part by the National Science Council of the Republic of China (NSC94-2320-B002-060 and NSC94-3114-P002-002-Y(8)) and in part by the National Taiwan University Hospital (NTUH98-S1141).
PY - 2009
Y1 - 2009
N2 - Oxidative stress and inflammation contributed to the propagation of acute liver injury (ALI). The present study was undertaken to determine whether D-galactosamine (D-GalN) induces ALI via the mitochondrial apoptosis- and proinflammatory cytokine-signaling pathways, and possible mechanism(s) by which green tea (GT) extract modulates the apoptotic and proinflammatory signaling in rat. D-GalN induced hepatic hypoxia/hypoperfusion and triggered reactive oxygen species (ROS) production from affected hepatocytes, infiltrated leukocytes, and activated Kupffer cells. D-GalN evoked cytosolic Bax and mitochondrial cytochrome C translocation and activated proinflammatory nuclear factor-kappa B (NF-B) and activator protein-1 (AP-1) translocation, contributing to the increase of intercellular adhesion molecule-1 expression, terminal deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL)-positive hepatocytes, multiple plasma cytokines and chemokines release, and alanine aminotransferase (ALT) activity. An altered biliary secretion profile of several acute phase proteins directly indicates oxidative stress affecting intracellular trafficking in the hepatocyte. GT pretreatment attenuated ROS production, mitochondrial apoptosis- and proinflammatory cytokine-signaling pathway, plasma ALT and cytokines levels, biliary acute phase proteins secretion and hepatic pathology by the enhancement of anti-apoptotic mechanisms. In conclusion, D-GalN induced ALI via hypoxia/hypoperfusion-enhanced mitochondrial apoptosis- and proinflammatory cytokine-signaling pathway, contributing to oxidative stress and inflammation in the liver. GT can counteract the D-GalN-induced ALI via the attenuation of apoptotic and proinflammatory signaling by the upregulation of anti-apoptotic mechanism.
AB - Oxidative stress and inflammation contributed to the propagation of acute liver injury (ALI). The present study was undertaken to determine whether D-galactosamine (D-GalN) induces ALI via the mitochondrial apoptosis- and proinflammatory cytokine-signaling pathways, and possible mechanism(s) by which green tea (GT) extract modulates the apoptotic and proinflammatory signaling in rat. D-GalN induced hepatic hypoxia/hypoperfusion and triggered reactive oxygen species (ROS) production from affected hepatocytes, infiltrated leukocytes, and activated Kupffer cells. D-GalN evoked cytosolic Bax and mitochondrial cytochrome C translocation and activated proinflammatory nuclear factor-kappa B (NF-B) and activator protein-1 (AP-1) translocation, contributing to the increase of intercellular adhesion molecule-1 expression, terminal deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL)-positive hepatocytes, multiple plasma cytokines and chemokines release, and alanine aminotransferase (ALT) activity. An altered biliary secretion profile of several acute phase proteins directly indicates oxidative stress affecting intracellular trafficking in the hepatocyte. GT pretreatment attenuated ROS production, mitochondrial apoptosis- and proinflammatory cytokine-signaling pathway, plasma ALT and cytokines levels, biliary acute phase proteins secretion and hepatic pathology by the enhancement of anti-apoptotic mechanisms. In conclusion, D-GalN induced ALI via hypoxia/hypoperfusion-enhanced mitochondrial apoptosis- and proinflammatory cytokine-signaling pathway, contributing to oxidative stress and inflammation in the liver. GT can counteract the D-GalN-induced ALI via the attenuation of apoptotic and proinflammatory signaling by the upregulation of anti-apoptotic mechanism.
UR - http://www.scopus.com/inward/record.url?scp=64649106801&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=64649106801&partnerID=8YFLogxK
U2 - 10.1186/1423-0127-16-35
DO - 10.1186/1423-0127-16-35
M3 - Article
C2 - 19317920
AN - SCOPUS:64649106801
SN - 1021-7770
VL - 16
JO - Journal of Biomedical Science
JF - Journal of Biomedical Science
IS - 1
M1 - 35
ER -