Global localization of Monte Carlo localization based on multi-objective particle swarm optimization

Chiang Heng Chien, Chen Chien Hsu, Wei Yen Wang, Wen-Chung Kao, Chiang Ju Chien

研究成果: 書貢獻/報告類型會議論文篇章

6 引文 斯高帕斯(Scopus)

摘要

Premature convergence often happens when a Monte Carlo localization (MCL) algorithm tries to localize a robot under highly symmetrical environments. In this paper, we propose a novel method of solving such problem for global localization by incorporating a multi-objective evolutionary approach to resample particles with two objectives, including particle weights and population distribution. By employing a multi-objective particle swarm optimization (MOPSO), our approach is capable of enhancing the exploration ability to improve population diversity while maintaining convergence quality to successfully localize the global optima. Simulation results have confirmed that localization performance using the proposed approach is significantly improved.

原文英語
主出版物標題2016 IEEE 6th International Conference on Consumer Electronics - Berlin, ICCE-Berlin 2016
編輯Tom Wilson, Wolfgang Endemann, Hans L. Cycon, Dietmar Hepper, Jose Maria Flores-Arias
發行者IEEE Computer Society
頁面96-97
頁數2
ISBN(電子)9781509020966
DOIs
出版狀態已發佈 - 2016 十月 25
事件6th IEEE International Conference on Consumer Electronics - Berlin, ICCE-Berlin 2016 - Berlin, 德国
持續時間: 2016 九月 52016 九月 7

出版系列

名字IEEE International Conference on Consumer Electronics - Berlin, ICCE-Berlin
2016-October
ISSN(列印)2166-6814
ISSN(電子)2166-6822

其他

其他6th IEEE International Conference on Consumer Electronics - Berlin, ICCE-Berlin 2016
國家/地區德国
城市Berlin
期間2016/09/052016/09/07

ASJC Scopus subject areas

  • 電氣與電子工程
  • 工業與製造工程
  • 媒體技術

指紋

深入研究「Global localization of Monte Carlo localization based on multi-objective particle swarm optimization」主題。共同形成了獨特的指紋。

引用此