Ginsenoside Rg3 ameliorates allergic airway inflammation and oxidative stress in mice

Wen Chung Huang, Tse Hung Huang, Kuo Wei Yeh, Ya Ling Chen, Szu Chuan Shen, Chian Jiun Liou*

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

43 引文 斯高帕斯(Scopus)

摘要

Background: Ginsenoside Rg3, isolated from Panax ginseng, has anti-inflammatory and anti-tumor activities. It is known to reduce inflammation in acute lung injury in mice, and to reduce the expression of inflammatory cytokines and COX-2 in human asthmatic airway epithelium. In this study, we attempted to determine whether ginsenoside Rg3 inhibits airway inflammation, oxidative stress, and airway hyperresponsiveness (AHR) in the lungs of asthmatic mice. We also investigated its effects on oxidative stress and the inflammatory response in tracheal epithelial cells. Methods: Asthma symptoms were induced in female BALB/c mice sensitized with ovalbumin (OVA). Mice were divided into five groups: normal controls, OVA-induced asthmatic controls, and asthmatic mice treated with ginsenoside Rg3 or prednisolone by intraperitoneal injection. Inflammatory BEAS-2B cells (human tracheal epithelial cells) treated with ginsenoside Rg3 to investigate its effects on inflammatory cytokines and oxidative responses. Results: Ginsenoside Rg3 treatment significantly reduced eosinophil infiltration, oxidative responses, airway inflammation, and AHR in the lungs of asthmatic mice. Ginsenoside Rg3 reduced Th2 cytokine and chemokine levels in bronchoalveolar lavage fluids and lung. Inflammatory BEAS-2B cells treated with ginsenoside Rg3 reduced the eotaxin and pro-inflammatory cytokine expressions, and monocyte adherence to BEAS-2B cells was significantly reduced as a result of decreased ICAM-1 expression. Furthermore, ginsenoside Rg3 reduced the expression of reactive oxygen species in inflammatory BEAS-2B cells.

原文英語
頁(從 - 到)654-664
頁數11
期刊Journal of Ginseng Research
45
發行號6
DOIs
出版狀態已發佈 - 2021 11月

ASJC Scopus subject areas

  • 生物技術
  • 生物化學、遺傳與分子生物學(雜項)
  • 補充和替代醫學

指紋

深入研究「Ginsenoside Rg3 ameliorates allergic airway inflammation and oxidative stress in mice」主題。共同形成了獨特的指紋。

引用此