Generative Adversarial Networks-based Face Hallucination with Identity-Preserving

Chia Hung Yeh, Daniel Chiu, Li Wei Kang, Chih Chung Hsu, Chen Lo

研究成果: 書貢獻/報告類型會議論文篇章

摘要

This paper presents a novel generative adversarial networks-based face hallucination framework for producing high-resolution face images from very low-resolution (LR) ones. We propose a multi-scale generator architecture with multi-scale loss functions for different upscaling factors and a triplet-based identity preserving loss for extracting multi-scale identity-aware facial representations. Experimental results have verified that our method can well super-resolve very LR face images (e.g., 8×8) quantitatively and qualitatively.

原文英語
主出版物標題2021 IEEE International Conference on Consumer Electronics-Taiwan, ICCE-TW 2021
發行者Institute of Electrical and Electronics Engineers Inc.
ISBN(電子)9781665433280
DOIs
出版狀態已發佈 - 2021
事件8th IEEE International Conference on Consumer Electronics-Taiwan, ICCE-TW 2021 - Penghu, 臺灣
持續時間: 2021 9月 152021 9月 17

出版系列

名字2021 IEEE International Conference on Consumer Electronics-Taiwan, ICCE-TW 2021

會議

會議8th IEEE International Conference on Consumer Electronics-Taiwan, ICCE-TW 2021
國家/地區臺灣
城市Penghu
期間2021/09/152021/09/17

ASJC Scopus subject areas

  • 人工智慧
  • 電腦科學應用
  • 電氣與電子工程
  • 控制和優化
  • 儀器

指紋

深入研究「Generative Adversarial Networks-based Face Hallucination with Identity-Preserving」主題。共同形成了獨特的指紋。

引用此