GENERALIZED ZERO-SHOT RECOGNITION THROUGH IMAGE-GUIDED SEMANTIC CLASSIFICATION

Fang Li, Mei Chen Yeh

研究成果: 書貢獻/報告類型會議論文篇章

摘要

We present a new visual-semantic embedding method for generalized zero-shot learning. Different to existing embedding-based methods that learn the correspondence between an image classifier and its class prototype for each class, we learn the mapping between an image and its semantic classifier. Given an input image, the proposed method creates a label classifier and applies it to all label embeddings to determine whether a label belongs to the input image. Therefore, a semantic classifier is image conditioned and is generated during inference. We validate our approach with four standard benchmark datasets.

原文英語
主出版物標題2021 IEEE International Conference on Image Processing, ICIP 2021 - Proceedings
發行者IEEE Computer Society
頁面2483-2487
頁數5
ISBN(電子)9781665441155
DOIs
出版狀態已發佈 - 2021
事件2021 IEEE International Conference on Image Processing, ICIP 2021 - Anchorage, 美国
持續時間: 2021 9月 192021 9月 22

出版系列

名字Proceedings - International Conference on Image Processing, ICIP
2021-September
ISSN(列印)1522-4880

會議

會議2021 IEEE International Conference on Image Processing, ICIP 2021
國家/地區美国
城市Anchorage
期間2021/09/192021/09/22

ASJC Scopus subject areas

  • 軟體
  • 電腦視覺和模式識別
  • 訊號處理

指紋

深入研究「GENERALIZED ZERO-SHOT RECOGNITION THROUGH IMAGE-GUIDED SEMANTIC CLASSIFICATION」主題。共同形成了獨特的指紋。

引用此