Functional divergence and intron variability during evolution of angiosperm TERMINAL FLOWER1 (TFL1) genes

Jian Gao, Bing Hong Huang, Yu Ting Wan, Jenyu Chang, Jun Qing Li, Pei Chun Liao*

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

11 引文 斯高帕斯(Scopus)

摘要

The protein encoded by the TERMINAL FLOWER1 (TFL1) gene maintains indeterminacy in inflorescence meristem to repress flowering, and has undergone multiple duplications. However, basal angiosperms have one copy of a TFL1-like gene, which clusters with eudicot TFL1/CEN paralogs. Functional conservation has been reported in the paralogs CENTRORADIALIS (CEN) in eudicots, and ROOTS CURL IN NPA (RCNs) genes in monocots. In this study, long-term functional conservation and selective constraints were found between angiosperms, while the relaxation of selective constraints led to subfunctionalisation between paralogs. Long intron lengths of magnoliid TFL1-like gene contain more conserved motifs that potentially regulate TFL1/CEN/RCNs expression. These might be relevant to the functional flexibility of the non-duplicate TFL1-like gene in the basal angiosperms in comparison with the short, lower frequency intron lengths in eudicot and monocot TFL1/CEN/RCNs paralogs. The functionally conserved duplicates of eudicots and monocots evolved according to the duplication-degeneration-complementation model, avoiding redundancy by relaxation of selective constraints on exon 1 and exon 4. These data suggest that strong purifying selection has maintained the relevant functions of TFL1/CEN/RCNs paralogs on flowering regulation throughout the evolution of angiosperms, and the shorter introns with radical amino acid changes are important for the retention of paralogous duplicates.

原文英語
文章編號14830
期刊Scientific reports
7
發行號1
DOIs
出版狀態已發佈 - 2017 12月 1

ASJC Scopus subject areas

  • 多學科

指紋

深入研究「Functional divergence and intron variability during evolution of angiosperm TERMINAL FLOWER1 (TFL1) genes」主題。共同形成了獨特的指紋。

引用此