Fractional integration and optimal estimates for elliptic systems

Felipe Hernandez, Daniel Spector*

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

1 引文 斯高帕斯(Scopus)

摘要

In this paper we give an affirmative answer to the Euclidean analogue of a question of Bourgain and Brezis concerning the optimal Lorentz estimate for a Div–Curl system: If F∈L1(R3;R3) satisfies divF=0 in the sense of distributions, then the function Z=curl(-Δ)-1F satisfies (Formula presented.) and there exists a constant C>0 such that (Formula presented.) Our proof relies on a new endpoint Hardy–Littlewood–Sobolev inequality for divergence free measures which we obtain via a result of independent interest, an atomic decomposition of such objects.

原文英語
文章編號117
期刊Calculus of Variations and Partial Differential Equations
63
發行號5
DOIs
出版狀態已發佈 - 2024 6月

ASJC Scopus subject areas

  • 分析
  • 應用數學

指紋

深入研究「Fractional integration and optimal estimates for elliptic systems」主題。共同形成了獨特的指紋。

引用此