Finite index theorems for iterated Galois groups of unicritical polynomials

Andrew Bridy, John R. Doyle, Dragos Ghioca, Liang Chung Hsia, Thomas J. Tucker

研究成果: 雜誌貢獻期刊論文同行評審

摘要

Let K be the function field of a smooth irreducible curve defined over Q¯. Let f ∈ K[x] be of the form f(x) = xq + c, where q = pr, r ≥ 1, is a power of the prime number p, and let β ∈ K̄. For all n ∈ ℕ ∪ {∞}, the Galois groups Gn(β) = Gal(K(f-n(β))/K(β)) embed into [Cq]n, the n-fold wreath product of the cyclic group Cq. We show that if f is not isotrivial, then [[Cq]∞ : G∞(β)] < ∞ unless β is postcritical or periodic. We are also able to prove that if f1(x) = xq + c1 and f2(x) = xq + c2 are two such distinct polynomials, then the fields ∪∞n=1 K(f-n1 (β)) and ∪∞n=1 K(f-n2 (β)) are disjoint over a finite extension of K.

原文英語
頁(從 - 到)733-752
頁數20
期刊Transactions of the American Mathematical Society
374
發行號1
DOIs
出版狀態已發佈 - 2021 一月

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

指紋 深入研究「Finite index theorems for iterated Galois groups of unicritical polynomials」主題。共同形成了獨特的指紋。

引用此