Feature extraction for bearing fault diagnosis using composite multiscale entropy

Shuen De Wu, Chiu Wen Wu, Shiou Gwo Lin, Chun Chieh Wang, Kung Yen Lee

研究成果: 書貢獻/報告類型會議論文篇章

2 引文 斯高帕斯(Scopus)

摘要

Multiscale entropy (MSE) is a popular algorithm to measure the complexity of a time series for multiple scales. However, the conventional MSE algorithm yields imprecise estimation of entropy for a time series with large time scale factors. In this paper, a composite multiscale entropy (CMSE) method is proposed to overcome this drawback. In the CMSE algorithm, with scale factors of τ, we calculate the sample entropies (SampEns) of all coarse-grained series and then define the mean of τ SampEns as the entropy values. This proposed algorithm is then applied to two different kinds of simulated noise signals and a set of real vibration data. These results demonstrate that the proposed CMSE provides more precise entropy calculation than the convectional MSE. Furthermore, as a feature extractor for a bearing faulty signal, CMSE provides a higher distinguishability, compared with MSE.

原文英語
主出版物標題2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
主出版物子標題Mechatronics for Human Wellbeing, AIM 2013
頁面1615-1618
頁數4
DOIs
出版狀態已發佈 - 2013
事件2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics: Mechatronics for Human Wellbeing, AIM 2013 - Wollongong, NSW, 澳大利亚
持續時間: 2013 7月 92013 7月 12

出版系列

名字2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics: Mechatronics for Human Wellbeing, AIM 2013

其他

其他2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics: Mechatronics for Human Wellbeing, AIM 2013
國家/地區澳大利亚
城市Wollongong, NSW
期間2013/07/092013/07/12

ASJC Scopus subject areas

  • 人工智慧
  • 電氣與電子工程
  • 機械工業

指紋

深入研究「Feature extraction for bearing fault diagnosis using composite multiscale entropy」主題。共同形成了獨特的指紋。

引用此