Fast kNN classification algorithm based on partial distance search

Wen Jyi Hwang*, Kuo Wei Wen

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

77 引文 斯高帕斯(Scopus)

摘要

A new fast kNN classification algorithm is presented for texture and pattern recognition. The algorithm identifies the first k closest vectors in the design set of a kNN classifier for each input vector by performing the partial distance search in the wavelet domain. Simulation results show that, without increasing the classification error rate, the algorithm requires only 12.94% of the computational time of the original kNN technique.

原文英語
頁(從 - 到)2062-2063
頁數2
期刊Electronics Letters
34
發行號21
DOIs
出版狀態已發佈 - 1998 十月 15
對外發佈

ASJC Scopus subject areas

  • 電氣與電子工程

指紋

深入研究「Fast kNN classification algorithm based on partial distance search」主題。共同形成了獨特的指紋。

引用此