摘要
Given a finite poset P, the intensively studied quantity La(n, P) denotes the largest size of a family of subsets of [n] not containing P as a weak subposet. Burcsi and Nagy (J. Graph Theory Appl. 1, 40–49 2013) proposed a double-chain method to get an upper bound La(n,P)≤12(|P|+h−2)(n⌊n/2⌋) for any finite poset P of height h. This paper elaborates their double-chain method to obtain a new upper boundLa(n,P)≤(|P|+h−α(GP)−22)(n⌊n2⌋)for any graded poset P, where α(GP) denotes the independence number of an auxiliary graph defined in terms of P. This result enables us to find more posets which verify an important conjecture by Griggs and Lu (J. Comb. Theory (Ser. A) 119, 310–322, 2012).
原文 | 英語 |
---|---|
頁(從 - 到) | 349-362 |
頁數 | 14 |
期刊 | Order |
卷 | 35 |
發行號 | 2 |
DOIs | |
出版狀態 | 已發佈 - 2018 7月 1 |
ASJC Scopus subject areas
- 代數與數理論
- 幾何和拓撲
- 計算機理論與數學