Fabrication of noble metal (Au, Ag, Pt)/polythiophene/reduced graphene oxide ternary nanocomposites for NH3 gas sensing at room temperature

Pi Guey Su*, Meng Shian Tsai, Chia Jung Lu

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

5 引文 斯高帕斯(Scopus)

摘要

Room temperature NH3 gas sensors composed of noble metal (Au, Ag or Pt)/polythiophene/reduced graphene oxide (Au, Ag or Pt/PTh/rGO) ternary nanocomposite films were fabricated using a simple one-pot redox reaction. The surface morphology and composition of Au, Ag or Pt/PTh/rGO ternary nanocomposite films were analyzed using Fourier transform infrared spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Compared with Ag/PTh/rGO and Pt/PTh/rGO ternary nanocomposite films, obviously bright Au nanoparticles were observed on the surface of the massive lamination PTh film which wrapped the rGO, and encapsulated Au nanoparticles were observed in the Au/PTh/rGO film. Comparative gas sensing results showed that the Au/PTh/rGO ternary nanocomposite film had the highest response compared with Ag/PTh/rGO and Pt/PTh/rGO ternary nanocomposite films at room temperature, especially when the testing concentration of NH3 gas was below 5 ppm. The Au/PTh/rGO ternary nanocomposite film also had a fast response time and good reproducibility. The combination of the high catalytic activity of naked Au nanoparticles and the formation of effective carrier transfer channels by encapsulated Au nanoparticles was responsible for the improved response of the Au/PTh/rGO ternary nanocomposite film.

原文英語
頁(從 - 到)4113-4121
頁數9
期刊Analytical Methods
14
發行號41
DOIs
出版狀態已發佈 - 2022 9月 27

ASJC Scopus subject areas

  • 分析化學
  • 一般化學工程
  • 一般工程

指紋

深入研究「Fabrication of noble metal (Au, Ag, Pt)/polythiophene/reduced graphene oxide ternary nanocomposites for NH3 gas sensing at room temperature」主題。共同形成了獨特的指紋。

引用此