摘要
A novel full-search variable-rate vector quantizer (VQ) design algorithm using competitive learning technique is presented. The algorithm, termed entropy-constrained competitive learning (ECCL) algorithm, can design a VQ having minimum average distortion subject to a rate constraint. The ECCL algorithm enjoys a better rate-distortion performance than that of the existing competitive learning algorithms. Moreover, the ECCL algorithm outperforms the entropy-constrained vector quantizer (ECVQ) design algorithm subject to the same rate and storage size constraints. In addition, the learning algorithm is more insensitive to the selection of initial codewords as compared with the ECVQ algorithm. Therefore, the ECCL algorithm can be an effective alternative to the existing variable-rate VQ design algorithms for the applications of signal compression.
原文 | 英語 |
---|---|
頁面 | 1715-1721 |
頁數 | 7 |
出版狀態 | 已發佈 - 1998 |
對外發佈 | 是 |
事件 | Proceedings of the IEEE GLOBECOM 1998 - The Bridge to the Global Integration - Sydney, NSW, Aust 持續時間: 1998 11月 8 → 1998 11月 12 |
會議
會議 | Proceedings of the IEEE GLOBECOM 1998 - The Bridge to the Global Integration |
---|---|
城市 | Sydney, NSW, Aust |
期間 | 1998/11/08 → 1998/11/12 |
ASJC Scopus subject areas
- 電氣與電子工程
- 全球和行星變化