Enhancing Video Capture in Mobile Applications for Power Saving Through Machine Learning

Tzu Heng Chen, Sheng Da Tsai, Chun Han Lin

研究成果: 書貢獻/報告類型會議論文篇章

摘要

In today's digital age, people have become accustomed to using camera applications to record and share their life experiences through videos. Enhancing the user experience of mobile devices involves a critical aspect to minimize the power consumption associated with recording videos. This paper delves into the realm of processing and displaying power-efficient videos, all recorded in real-time through camera applications. Based on pixel-scaling methods, we introduce a frame-ratio predictor, utilizing machine-learning techniques to predict frame ratios efficiently. The results, as demonstrated on a commercial smartphone using four real-world videos, are remarkably promising.

原文英語
主出版物標題39th Annual ACM Symposium on Applied Computing, SAC 2024
發行者Association for Computing Machinery
頁面1038-1039
頁數2
ISBN(電子)9798400702433
DOIs
出版狀態已發佈 - 2024 4月 8
事件39th Annual ACM Symposium on Applied Computing, SAC 2024 - Avila, 西班牙
持續時間: 2024 4月 82024 4月 12

出版系列

名字Proceedings of the ACM Symposium on Applied Computing

會議

會議39th Annual ACM Symposium on Applied Computing, SAC 2024
國家/地區西班牙
城市Avila
期間2024/04/082024/04/12

ASJC Scopus subject areas

  • 軟體

指紋

深入研究「Enhancing Video Capture in Mobile Applications for Power Saving Through Machine Learning」主題。共同形成了獨特的指紋。

引用此