Enhancing Solution Diversity in Arithmetic Problems using Fine-Tuned AI Language Model

Chang Yu Lee, I. Wei Lai*

*此作品的通信作者

研究成果: 書貢獻/報告類型會議論文篇章

摘要

After the emergence of large language models (LLMs), numerous studies have incorporated LLM into educational contexts. Nevertheless, due to the suboptimal performance of LLM in mathematical computations, the application of math education with the aid of LLM is limited. Meanwhile, as the educational experts indicate that, the students can learn better if diverse solutions are provided. Thus, we propose a methodology that simplifies the LLM to learn through instructional abstraction. By adopting this methodology, the solution diversity is greatly, automatically, and most importantly, accurately generated.

原文英語
主出版物標題11th IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2024
發行者Institute of Electrical and Electronics Engineers Inc.
頁面515-516
頁數2
ISBN(電子)9798350386844
DOIs
出版狀態已發佈 - 2024
事件11th IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2024 - Taichung, 臺灣
持續時間: 2024 7月 92024 7月 11

出版系列

名字11th IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2024

會議

會議11th IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2024
國家/地區臺灣
城市Taichung
期間2024/07/092024/07/11

ASJC Scopus subject areas

  • 人機介面
  • 電氣與電子工程
  • 媒體技術
  • 建模與模擬
  • 儀器

指紋

深入研究「Enhancing Solution Diversity in Arithmetic Problems using Fine-Tuned AI Language Model」主題。共同形成了獨特的指紋。

引用此