Enhancing Person Re-identification Using Polynomial Expansion of Cross Entropy Loss

Shao Kang Huang*, Chen Chien Hsu, Wei Yen Wang, Yin Tien Wang

*此作品的通信作者

研究成果: 書貢獻/報告類型會議論文篇章

摘要

In the advance of machine learning, person re-identification (re-ID) algorithms have gained a dramatic improvement to identify a person without a clear face or frontal image in the real world. Since recent studies have found that the polynomial expansion of cross entropy loss function can learn more effectively than the original version on training neural networks for object detection tasks, we are motivated to utilize this finding to make an improvement on the deep metric learning for person re-ID. In this work, we utilize a linear combination of a polynomial cross entropy and a triplet loss function to train the well-known AGW baseline. Experimental results have shown that the proposed method outperforms the original AGW, reaching rank-1 accuracy of 96.4% (with mAP: 94.6) and rank-1 accuracy of 93.6% (with mAP: 91.4) on Market1501 and DukeMTMC datasets, respectively.

原文英語
主出版物標題2024 IEEE International Conference on Consumer Electronics, ICCE 2024
發行者Institute of Electrical and Electronics Engineers Inc.
ISBN(電子)9798350324136
DOIs
出版狀態已發佈 - 2024
事件2024 IEEE International Conference on Consumer Electronics, ICCE 2024 - Las Vegas, 美国
持續時間: 2024 1月 62024 1月 8

出版系列

名字Digest of Technical Papers - IEEE International Conference on Consumer Electronics
ISSN(列印)0747-668X
ISSN(電子)2159-1423

會議

會議2024 IEEE International Conference on Consumer Electronics, ICCE 2024
國家/地區美国
城市Las Vegas
期間2024/01/062024/01/08

ASJC Scopus subject areas

  • 工業與製造工程
  • 電氣與電子工程

指紋

深入研究「Enhancing Person Re-identification Using Polynomial Expansion of Cross Entropy Loss」主題。共同形成了獨特的指紋。

引用此